

SLLS596C-OCTOBER 2003-REVISED AUGUST 2009

24 DOUT3

22 ROUT3

20 OUT4

23 RIN3

21 DIN4

19 DIN3

18 DIN2

16 RIN4

15 🛛 V-

14 C2-

13 C2+

17 ROUT4

DB OR DW PACKAGE

(TOP VIEW)

DOUT2 1

DOUT1 I 2

ROUT2 4

ROUT1 6

RIN2 🛛 3

RIN1 7

GND 8

V_{CC} [] 9

C1+ **[**10

V+

C1-

11

12

5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

FEATURES

- ESD Protection for RS-232 I/O Pins

 ±15-kV Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates at 5-V V_{CC} Supply
- Four Drivers and Four Receivers
- Operates up to 120 kbit/s
- External Capacitors: 4 × 0.1 μF
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

DESCRIPTION

The MAX208 device consists of four line drivers, four line receivers, and a dual charge-pump circuit with \pm 15-kV HBM ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 5-V supply. The devices operate at data signaling rates up to 120 kbit/s and a maximum of 30-V/µs driver output slew rate.

T _A	P	PACKAGE ⁽²⁾ ORDERABLE PART NUMBER		TOP-SIDE MARKING			
	SOIC - DW	Tube of 25	MAX208CDW	MAX2000			
0°C to 70°C	50IC - DW	Reel of 2000	MAX208CDWR	MAX208C			
0°C to 70°C	0000 00	Tube of 60	MAX208CDB	MA2000			
	SSOP – DB	Reel of 2000	MAX208CDBR	- MA208C			
		Tube of 25	MAX208IDW	MAX2001			
40%C to 05%C	SOIC – DW	Reel of 2000	MAX208IDWR	- MAX208I			
–40°C to 85°C		Tube of 60	MAX208IDB	MD000			
	SSOP – DB	Reel of 2000	MAX208IDBR	- MB208I			

ORDERING INFORMATION⁽¹⁾

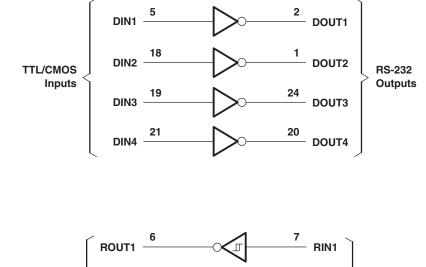
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE EACH DRIVER⁽¹⁾

INPUT DIN	OUTPUT DOUT
L	Н
н	L


(1) H = high level, L = low level

FUNCTION TABLE EACH RECEIVER⁽¹⁾

INPUT RIN	OUTPUT ROUT			
L	Н			
Н	L			
Open	Н			

 H = high level, L = low level, Open = input disconnected or connected driver off

logic diagram (positive logic)

4 3 ROUT2 RIN2 TTL/CMOS **RS-232** Outputs Inputs 23 22 ROUT3 -RIN3 17 16 **ROUT**4 RIN4

EXAS NSTRUMENTS

SLLS596C-OCTOBER 2003-REVISED AUGUST 2009

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

V _{CC}	Supply voltage range ⁽²⁾	–0.3 V to 6 V		
V+	Positive charge pump voltage range ⁽²⁾		V_{CC} – 0.3 V to 14 V	
V–	Negative charge pump voltage range ⁽²⁾		-14 V to 0.3 V	
V+ - V-	Supply voltage difference ⁽²⁾	13 V		
		Drivers	-0.3 V to V+ + 0.3 V	
VI	Input voltage range	Receivers	±30 V	
		Drivers	V0.3 V to V++0.3 V	
Vo	Output voltage range	Receivers	-0.3 V to V _{CC} + 0.3 V	
	Short-circuit duration on DOUT	i	Continuous	
0	Decline the second interval $(3)(4)$	DB package	63°C/W	
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	DW package	46°C/W	
TJ	Operating virtual-junction temperature		150°C	
T _{stg}	Storage temperature range		–65°C to 150°C	

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient (3) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

(4)

RECOMMENDED OPERATING CONDITIONS

C1 to C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5	5.5	V
VIH	Driver high-level input voltage	DIN	2			V
VIL	Driver low-level input voltage	DIN			0.8	V
	Driver input voltage DIN		0		5.5	V
VI	Driver high-level input voltage Driver low-level input voltage		-30		30	v
т	Operating free air temperature	MAX208C	0		70	°C
IA		MAX208I	-40		85	

ELECTRICAL CHARACTERISTICS

C1 to C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC}	Supply current	No load, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$		11	20	mA

SLLS596C-OCTOBER 2003-REVISED AUGUST 2009

DRIVER SECTION

ELECTRICAL CHARACTERISTICS

C1 to C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	DOUT at $R_L = 3 k\Omega$ to GND, DIN = GND	5	9		V
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = V_{CC}	-5	-9		V
I _{IH}	High-level input current	$V_{I} = V_{CC}$		15	200	μΑ
I	Low-level input current	$V_{I} = 0 V$		-15	-200	μA
I _{OS}	Short-circuit output current ⁽¹⁾	$V_{CC} = 5.5 \text{ V}, \text{ V}_{O} = 0 \text{ V}$		±10	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V, V_{O} = ±2 V	300			Ω

(1) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS

C1 to C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Maximum data rate	C_L = 50 to 1000 pF, One DOUT switching, R_L = 3 k Ω to 7 k $\Omega,$ See Figure 1	120			kbit/s
t _{PLH (D)}	Propagation delay time, low- to high-level output	C_L = 2500 pF, All drivers loaded, R_L = 3 kΩ, See Figure 1		2		μs
t _{PHL (D)}	Propagation delay time, high- to low-level output	C_L = 2500 pF, All drivers loaded, R_L = 3 kΩ, See Figure 1		2		μs
t _{sk(p)}	Pulse skew ⁽²⁾	C _L = 150 pF to 2500 pF, See Figure 2		300		ns
SR(tr)	Slew rate, transition region (see Figure 1)	C_{L} = 50 pF to 2500 pF, R_{L} = 3 k Ω to 7 k $\Omega,$ V_{CC} = 5 V	3	6	30	V/µs

 $\begin{array}{ll} \mbox{(1)} & \mbox{All typical values are at } V_{CC} = 5 \mbox{ V and } T_A = 25^{\circ}\mbox{C}. \\ \mbox{(2)} & \mbox{Pulse skew is defined as } |t_{PLH} - t_{PHL}| \mbox{ of each channel of the same device.} \end{array}$

ESD PROTECTION

PIN	TEST CONDITIONS	TYP	UNIT
DOUT, RIN	Human-Body Model	±15	kV

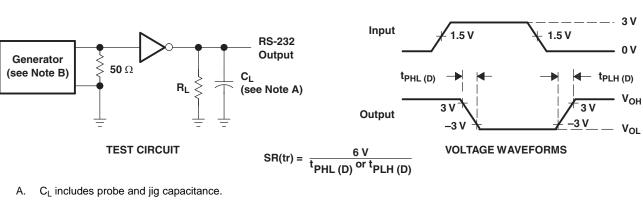
RECEIVER SECTION

ELECTRICAL CHARACTERISTICS

C1 to C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	3.5			V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
$V_{\text{IT+}}$	Positive-going input threshold voltage	$V_{CC} = 5 V, T_A = 25^{\circ}C$		1.7	2.4	V
V_{IT-}	Negative-going input threshold voltage	$V_{CC} = 5 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$	0.8	1.2		V
V _{hys}	Input hysteresis (V _{IT+} – V _{IT} -)	$V_{CC} = 5 V$	0.2	0.5	1	V
r _i	Input resistance	$V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}, V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$	3	5	7	kΩ

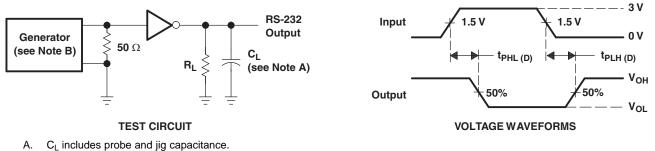
SWITCHING CHARACTERISTICS


C1 to C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

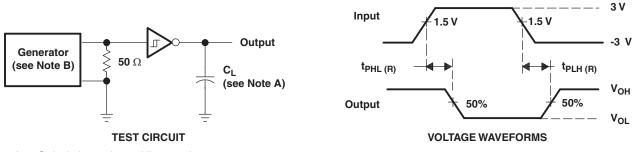
	PARAMETER	TEST CONDITIONS	MIN TYP ⁽¹⁾	MAX	UNIT
t _{PLH (R)}	Propagation delay time, low- to high-level output	C _L = 150 pF	0.5	10	μs
t _{PHL (R)}	Propagation delay time, high- to low-level output	C _L = 150 pF	0.5	10	μs
t _{sk(p)}	Pulse skew ⁽²⁾		300		ns

TEXAS INSTRUMENTS

www.ti.com


SLLS596C-OCTOBER 2003-REVISED AUGUST 2009

PARAMETER MEASUREMENT INFORMATION


B. The pulse generator has the following characteristics: PRR = 120 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

B. The pulse generator has the following characteristics: PRR = 120 kbit/s, $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

Texas

INSTRUMENTS

SLLS596C-OCTOBER 2003-REVISED AUGUST 2009

24 1 DOUT3 DOUT2 23 2 DOUT1 RIN3 Π 5 **k**Ω 3 22 RIN2 ROUT3 $\mathbf{5} \mathbf{k} \Omega$ 5 V ≶ 4 **400 k**Ω ROUT2 21 DIN4 5 V 20 DOUT4 Ş **400 k**Ω 5 V 5 DIN1 ≶ **400 k**Ω 6 19 ROUT1 DIN3 5 V ≶ **400 k**Ω 18 7 RIN1 DIN2 П **5 κ**Ω GND 17 8 **ROUT**4 1 16 ÷ 0.1 µF RIN4 0.1 µF 9 16 V Vcc 15 v-0.1 µF 6.3 V ÷ 10 C1+ 14 C2-11 V+ 0.1 µF 16 V ÷ 0.1 μF 13 12 6.3 V C2+ C1-

APPLICATION INFORMATION

- A. Resistor values shown are nominal.
- B. Non-polarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Figure 4. Typical Operating Circuit and Capacitor Values

SLLS596C-OCTOBER 2003-REVISED AUGUST 2009

Capacitor Selection

The capacitor type used for C1–C4 is not critical for proper operation. The MAX208 requires 0.1- μ F capacitors, although capacitors up to 10 μ F can be used without harm. Ceramic dielectrics are suggested for the 0.1- μ F capacitors. When using the minimum recommended capacitor values, ensure that the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2x) nominal value. The capacitors' effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V–.

Use larger capacitors (up to 10 μ F) to reduce the output impedance at V+ and V–.

Bypass V_{CC} to ground with at least 0.1 μ F. In applications sensitive to power-supply noise generated by the charge pumps, decouple V_{CC} to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1 to C4).

ESD Protection

TI MAX208 devices have standard ESD protection structures incorporated on the pins to protect against electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus pins (driver outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD structures were designed to successfully protect these bus pins against ESD discharge of ±15 kV when powered down.

ESD Test Conditions

ESD testing is stringently performed by TI, based on various conditions and procedures. Please contact TI for a reliability report that documents test setup, methodology, and results.

Human-Body Model (HBM)

The HBM of ESD testing is shown in Figure 5, while Figure 6 shows the current waveform that is generated during a discharge into a low impedance. The model consists of a 100-pF capacitor, charged to the ESD voltage of concern and subsequently discharged into the DUT through a 1.5-k Ω resistor.

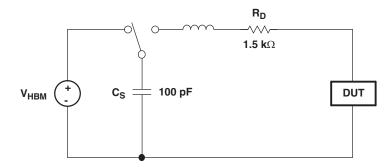


Figure 5. HBM ESD Test Circuit

TEXAS INSTRUMENTS

www.ti.com

Figure 6. Typical HBM Current Waveform

Machine Model (MM)

The MM ESD test applies to all pins using a 200-pF capacitor with no discharge resistance. The purpose of the MM test is to simulate possible ESD conditions that can occur during the handling and assembly processes of manufacturing. In this case, ESD protection is required for all pins, not just RS-232 pins. However, after PC board assembly, the MM test no longer is as pertinent to the RS-232 pins.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
part number	(1)	(2)			(3)	(4)	(5)		(6)
MAX208CDBR	Obsolete	Production	SSOP (DB) 24	-	-	Call TI	Call TI	0 to 70	MA208C
MAX208CDW	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX208C
MAX208CDWR	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX208C
MAX208IDB	Obsolete	Production	SSOP (DB) 24	-	-	Call TI	Call TI	-40 to 85	MB208I
MAX208IDBR	Obsolete	Production	SSOP (DB) 24	-	-	Call TI	Call TI	-40 to 85	MB208I
MAX208IDW	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX208I
MAX208IDWR	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX208I

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

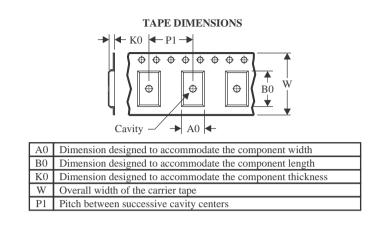
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

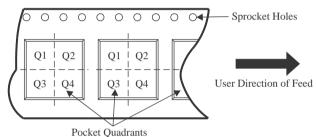
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

1-May-2025

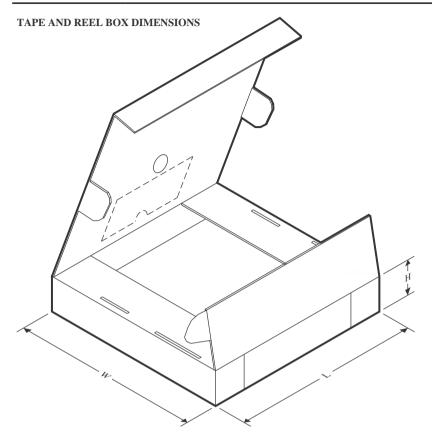


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

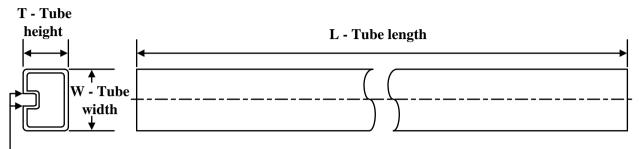


*All dimensions are nominal												
Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX208CDWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
MAX208IDWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

6-Apr-2024

*All dimensions are nominal

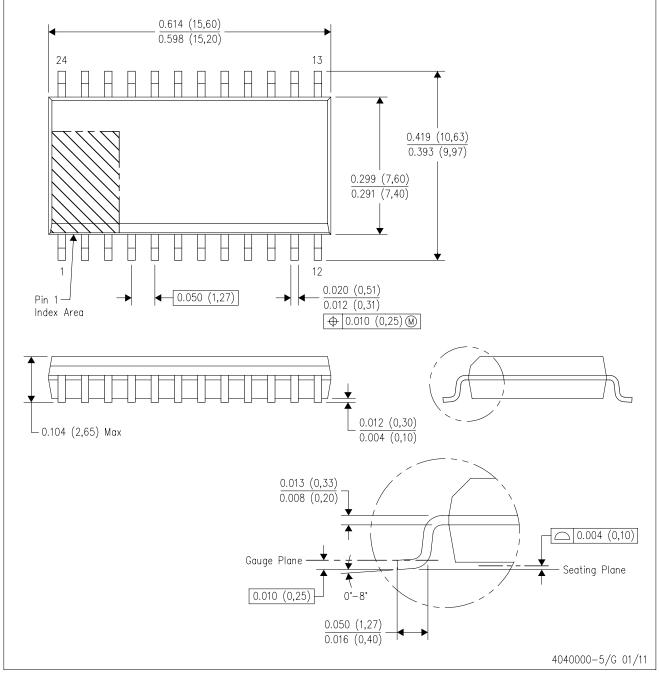

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MAX208CDWR	SOIC	DW	24	2000	350.0	350.0	43.0
MAX208IDWR	SOIC	DW	24	2000	350.0	350.0	43.0

TEXAS INSTRUMENTS

www.ti.com

6-Apr-2024

TUBE


- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
MAX208CDW	DW	SOIC	24	25	506.98	12.7	4826	6.6
MAX208IDW	DW	SOIC	24	25	506.98	12.7	4826	6.6

DW (R-PDSO-G24)

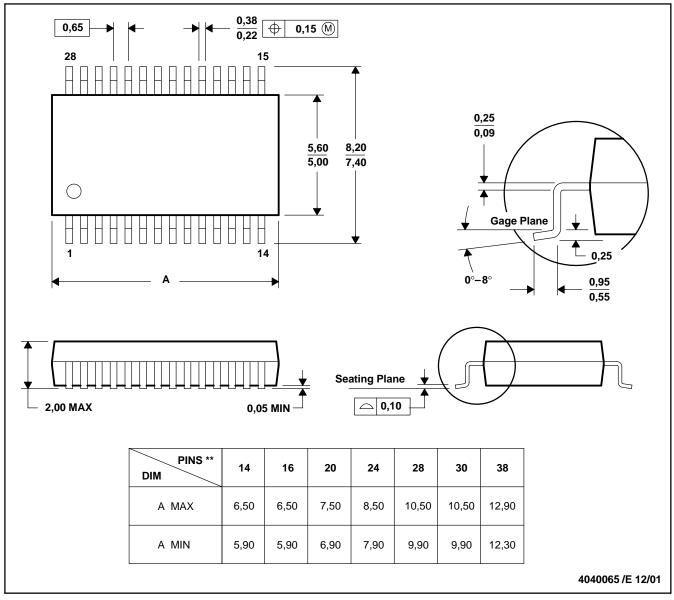
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated