www.ti.com **SLLS797-JUNE 2007** #### **FEATURES** - RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM) - Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards - Operates With 3-V to 5.5-V V_{CC} Supply - · Operates up to 400 kbit/s - Five Drivers and Three Receivers - Auto-Powerdown Plus Feature Enables Flexible Power-Down Mode - Low Standby Current . . . 1 μA Typical - External Capacitors . . . 4 × 0.1 μF - Accepts 5-V Logic Input With 3.3-V Supply - Always-Active Noninverting Receiver Output (ROUT1B) - Alternative High-Speed Pin-Compatible Device (1 Mbit/s) for TRSF3238 - ESD Protection for RS-232 Interface Pins - ±15 kV Human-Body Model (HBM) - ±8 kV IEC61000-4-2, Contact Discharge - ±15 kV IEC61000-4-2, Air-Gap Discharge #### **APPLICATIONS** - Battery-Powered Systems - PDAs - Notebooks - Subnotebooks - Laptops - Palmtop PCs - Hand-Held Equipment - Modems - Printers **RHB PACKAGE** N.C. - Not inter nally connected #### **DESCRIPTION/ORDERING INFORMATION** The TRS3238E consists of five line drivers, three line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection on the driver output (DOUT) and receiver input (RIN) terminals. The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between notebook and subnotebook computer applications. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT1B), which allows applications using the ring indicator to transmit data while the device is powered down. This device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH \pm 15-kV ESD (HBM) PROTECTION SLLS797-JUNE 2007 ## **DESCRIPTION/ORDERING INFORMATION (CONTINUED)** Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-powerdown plus feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 μA. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus occurs if there is no activity in the logic levels for the driver inputs. Auto-powerdown plus can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown plus enabled, the device activates automatically when a valid signal is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than –2.7 V, or has been between –0.3 V and 0.3 V for less than 30 μs. INVALID is low (invalid data) if all receiver input voltages are between –0.3 V and 0.3 V for more than 30 μs. Refer to Figure 5 for receiver input levels. #### **ORDERING INFORMATION** | T _A | PACKA | GE ⁽¹⁾⁽²⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|------------|----------------------|-----------------------|------------------| | | SSOP – DB | Tube of 50 | TRS3238ECDB | TRS3238EC | | | 220b – DB | Reel of 2000 | TRS3238ECDBR | TRS3230EC | | 0°C to 70°C | TSSOP – PW | Tube of 50 | TRS3238ECPW | RS38EC | | 0 0 10 70 0 | 1330F – FW | Reel of 2000 | TRS3238ECPWR | KSSOEC | | | SOIC - DW | Reel of 2000 | TRS3238ECDWR | TRS3238EC | | | QFN – RHB | Reel of 2000 | TRS3238ECRHBR | PREVIEW | | | SSOP – DB | Tube of 50 | TRS3238EIDB | TRS3238EI | | | 330F - DB | Reel of 2000 | TRS3238EIDBR | IRSSZSOEI | | 40°C to 95°C | TSSOP – PW | Tube of 50 | TRS3238EIPW | DC20EI | | –40°C to 85°C | 1330P – PW | Reel of 2000 | TRS3238EIPWR | RS38EI | | | SOIC - DW | Reel of 2000 | TRS3238ICDWR | TRS3238EI | | | QFN – RHB | Reel of 2000 | TRS3238EIRHBR | PREVIEW | ⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. # TRS3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD (HBM) PROTECTION SLLS797-JUNE 2007 #### **FUNCTION TABLES** ## Each Driver⁽¹⁾ | | | INPUTS | | ОИТРИТ | | |-----|---------|----------|---|--------|------------------------------| | DIN | FORCEON | FORCEOFF | TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION | DOUT | DRIVER STATUS | | Х | Х | L | X | Z | Powered off | | L | Н | Н | X | Н | Normal operation with | | Н | Н | Н | X | L | auto-powerdown plus disabled | | L | L | Н | <30 s | Н | Normal operation with | | Н | L | Н | <30 s | L | auto-powerdown plus enabled | | L | L | Н | >30 s | Z | Powered off by | | Н | L | Н | >30 s | Z | auto-powerdown plus feature | ⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance ## Each Receiver(1) | | | INPUTS | | OUT | PUTS | | |------|-----------|----------|---|--------|--------------------|-----------------------| | RIN1 | RIN2-RIN3 | FORCEOFF | TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION | ROUT1B | ROUT2 AND
ROUT3 | RECEIVER STATUS | | L | X | L | X | L | Z | Powered off while | | Н | X | L | X | Н | Z | ROUT1B is active | | L | L | Н | <30 s | L | Н | | | L | Н | Н | <30 s | L | L | Normal operation with | | Н | L | Н | <30 s | Н | Н | auto-powerdown plus | | Н | Н | Н | <30 s | Н | L | disabled/enabled | | Open | Open | Н | <30 s | L | Н | | ⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off # 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD (HBM) PROTECTION SLLS797-JUNE 2007 # LOGIC DIAGRAM (POSITIVE LOGIC) # TRS3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SLLS797-JUNE 2007 ## Absolute Maximum Ratings(1) over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|--|----------------------------|-------|----------------|------| | V_{CC} | Supply voltage range ⁽²⁾ | | -0.3 | 6 | V | | V+ | Positive-output supply voltage range (2) | | -0.3 | 7 | V | | V- | Negative-output supply voltage range (2) | | 0.3 | -7 | V | | V+ - V- | Supply voltage difference ⁽²⁾ | | | 13 | V | | M | land to all and the second | Driver (FORCEOFF, FORCEON) | -0.3 | 6 | \/ | | V_{I} | Input voltage range | Receiver | -25 | 25 | V | | M | O day to selle me me me | Driver | -13.2 | 13.2 | | | Vo | Output voltage range | Receiver (INVALID) | -0.3 | $V_{CC} + 0.3$ | V | | | | DB package | | 62 | | | 0 | Dealers at house lines ado a (3)(4) | DW package | | 46 | 0000 | | θ_{JA} | Package thermal impedance (3) (4) | PW package | | 62 | °C/W | | | | RHB package | | PREVIEW | | | T_J | Operating virtual junction temperature | | | 150 | °C | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltages are with respect to network GND. # Recommended Operating Conditions⁽¹⁾ See Figure 6 | | | | | MIN | NOM | MAX | UNIT | |----------|---|---------------------|--------------------------|-----|-----|-----|------| | | Supply voltage | | $V_{CC} = 3.3 \text{ V}$ | 3 | 3.3 | 3.6 | V | | | Supply voltage | | $V_{CC} = 5 V$ | 4.5 | 5 | 5.5 | V | | \/ | Driver and central high level input valtage | DIN, FORCEOFF, | V _{CC} = 3.3 V | 2 | | 5.5 | V | | V_{IH} | Driver and control high-level input voltage | FORCEON | V _{CC} = 5 V | 2.4 | | 5.5 | V | | V_{IL} | Driver and control low-level input voltage | DIN, FORCEOFF, FORC | EON | 0 | | 8.0 | V | | V_{I} | Receiver input voltage | | | -25 | | 25 | V | | _ | | | TRS3238EC | 0 | | 70 | °C | | IA | Operating free-air temperature | | TRS3238EI | -40 | | 85 | -0 | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. #### Electrical Characteristics(1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARA | METER | TEST CONDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |-----|-------------------------|------------------------------|---|-----|--------------------|-----|------| | I | Input leakage current | FORCEOFF, FORCEON | | | ±0.01 | ±1 | μA | | | | Auto-powerdown plus disabled | No load, FORCEOFF and FORCEON at V _{CC} | | 0.5 | 2 | mA | | Icc | Supply current | Powered off | No load, FORCEOFF at GND | | 1 | 10 | | | | (T _A = 25°C) | Auto-powerdown plus enabled | No load, FORCEOFF at V _{CC} ,
FORCEON at GND,
All RIN are open or grounded | | 1 | 10 | μΑ | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.15$ V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 $V \pm 0.3$ V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 $V \pm 0.5$ V. ⁽³⁾ Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. ⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7. ⁽²⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$. # 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SLLS797-JUNE 2007 #### **DRIVER SECTION** ## Electrical Characteristics(1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARAMETER | TE | ST CONDITIONS | , | MIN | TYP ⁽²⁾ | MAX | UNIT | |-----------------|---|--|-----------------------------|----------------------------------|-----|--------------------|------|------| | V_{OH} | High-level output voltage | All DOUT at $R_L = 3 \text{ k}\Omega$ to | GND | | 5 | 5.4 | | ٧ | | V_{OL} | Low-level output voltage | All DOUT at $R_L = 3 \text{ k}\Omega$ to | GND | | -5 | -5.4 | | ٧ | | I _{IH} | High-level input current | $V_I = V_{CC}$ | | | | ±0.01 | ±1 | μΑ | | I _{IL} | Low-level input current | V _I at GND | | | | ±0.01 | ±1 | μΑ | | | Short-circuit output current ⁽³⁾ | V _{CC} = 3.6 V, | V _O = 0 V | | | ±35 | ±60 | mA | | Ios | Short-circuit output current | $V_{CC} = 5.5 V,$ | $V_O = 0 V$ | | | ±40 | ±100 | IIIA | | ro | Output resistance | V_{CC} , V+, and V- = 0 V, | $V_O = \pm 2 \text{ V}$ | | 300 | 10M | | Ω | | | Output looks as surrent | FORCEOFF = GND | $V_{O} = \pm 12 V$, | V_{CC} = 3 V to 3.6 V | | | ±25 | | | I _{OZ} | Output leakage current | FUNCEUFF = GND | $V_{O} = \pm 10 \text{ V},$ | V _{CC} = 4.5 V to 5.5 V | | | ±25 | μA | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.15$ V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 $V \pm 0.3$ V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. #### Switching Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARAMETER | TEST CO | NDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |--------------------|------------------------------|---|--|-----|--------------------|-----|--------| | | Maximum data rate | C _L = 1000 pF,
One DOUT switching, | $R_L = 3 k\Omega$,
See Figure 1 | 250 | 400 | | kbit/s | | t _{sk(p)} | Pulse skew ⁽³⁾ | C _L = 150 pF to 2500 pF,
See Figure 2 | $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ | | 100 | | ns | | SR(tr) | Slew rate, transition region | V _{CC} = 3.3 V, | C _L = 150 pF to 1000 pF | 6 | | 30 | V/µs | | SK(II) | (see Figure 1) | $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$ | C _L = 150 pF to 2500 pF | 4 | | 30 | v/μS | Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.15 V$; C1–C4 = 0.22 μ F at V_{CC} = 3.3 $V \pm 0.3 V$; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. #### **ESD Protection** | PARAMETER | TEST CONDITIONS | TYP | UNIT | |-----------|----------------------------------|-----|------| | | НВМ | ±15 | | | DOUT | IEC 61000-4-2, Air-Gap Discharge | ±15 | kV | | | IEC 61000-4-2, Contact Discharge | ±8 | | All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time. ⁽³⁾ Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. # **TRS3238E** 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SLLS797-JUNE 2007 #### **RECEIVER SECTION** #### Electrical Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |------------------|---|--|-----------------------|-----------------------|-----|------| | V_{OH} | High-level output voltage | $I_{OH} = -1 \text{ mA}$ | V _{CC} - 0.6 | V _{CC} – 0.1 | | ٧ | | V_{OL} | Low-level output voltage | $I_{OL} = 1.6 \text{ mA}$ | | | 0.4 | V | | \/ | Positive-going input threshold voltage | $V_{CC} = 3.3 \text{ V}$ | | 1.5 | 2.4 | V | | V _{IT+} | Positive-going input tilleshold voltage | $V_{CC} = 5 V$ | | 1.8 | 2.4 | V | | 1/ | Negative going input threshold voltage | V _{CC} = 3.3 V | 0.6 | 1.2 | | ٧ | | V _{IT} | Negative-going input threshold voltage | $V_{CC} = 5 V$ | 0.8 | 1.5 | | V | | V_{hys} | Input hysteresis (V _{IT+} - V _{IT-}) | | | 0.3 | | V | | I_{OZ} | Output leakage current (except ROUT1B) | FORCEOFF = 0 V | | ±0.05 | ±10 | μΑ | | r _i | Input resistance | $V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$ | 3 | 5 | 7 | kΩ | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V\pm0.15$ V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 $V\pm0.3$ V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. # Switching Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | TYP ⁽²⁾ | UNIT | |--------------------|---|---|--------------------|------| | t _{PLH} | Propagation delay time, low- to high-level output | C _L = 150 pF, See Figure 3 | 150 | ns | | t _{PHL} | Propagation delay time, high- to low-level output | C _L = 150 pF, See Figure 3 | 150 | ns | | t _{en} | Output enable time | $C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$ | 200 | ns | | t _{dis} | Output disable time | $C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$ | 200 | ns | | t _{sk(p)} | Pulse skew ⁽³⁾ | See Figure 3 | 50 | ns | Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.15 V$; C1–C4 = 0.22 μ F at V_{CC} = 3.3 $V \pm 0.3 V$; and C1 = 0.047 μ F and C2–C4 = 0.33 μF at V_{CC} = 5 V \pm 0.5 V. #### **ESD Protection** | PARAMETER | TEST CONDITIONS | TYP | UNIT | |-----------|----------------------------------|-----|------| | | НВМ | ±15 | 1 | | RIN | IEC 61000-4-2, Air-Gap Discharge | ±15 | kV | | | IEC 61000-4-2, Contact Discharge | ±8 | | ⁽²⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. # 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD (HBM) PROTECTION SLLS797-JUNE 2007 #### **AUTO-POWERDOWN PLUS SECTION** #### **Electrical Characteristics** over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |-------------------------|--|--|-----------------------|-----|------| | V _{T+(valid)} | Receiver input threshold for INVALID high-level output voltage | FORCEON = GND, FORCEOFF = V _{CC} | | 2.7 | V | | V _{T-(valid)} | Receiver input threshold for INVALID high-level output voltage | FORCEON = GND, FORCEOFF = V _{CC} | -2.7 | | V | | V _{T(invalid)} | Receiver input threshold for INVALID low-level output voltage | FORCEON = GND, FORCEOFF = V _{CC} | -0.3 | 0.3 | V | | V _{OH} | INVALID high-level output voltage | I _{OH} = -1 mA, FORCEON = GND,
FORCEOFF = V _{CC} | V _{CC} - 0.6 | | V | | V _{OL} | INVALID low-level output voltage | I _{OL} = 1.6 mA, FORCEON = GND,
FORCEOFF = V _{CC} | | 0.4 | V | #### **Switching Characteristics** over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | MIN | TYP ⁽¹⁾ | MAX | UNIT | |----------------------|---|-----|--------------------|-----|------| | t _{valid} | Propagation delay time, low- to high-level output | | 0.1 | | μs | | t _{invalid} | Propagation delay time, high- to low-level output | | 50 | | μs | | t _{en} | Supply enable time | | 25 | | μs | | t _{dis} | Receiver or driver edge to auto-powerdown plus | 15 | 30 | 60 | S | ⁽¹⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. www.ti.com **SLLS797-JUNE 2007** #### PARAMETER MEASUREMENT INFORMATION - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns. Figure 1. Driver Slew Rate - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. Figure 2. Driver Pulse Skew - A. C₁ includes probe and jig capacitance. - B. The pulse generator has the following characteristics: Z_O = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns. Figure 3. Receiver Propagation Delay Times # 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD (HBM) PROTECTION SLLS797-JUNE 2007 # PARAMETER MEASUREMENT INFORMATION (continued) - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. - C. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - D. t_{PZL} and t_{PZH} are the same as t_{en} . Figure 4. Receiver Enable and Disable Times SLLS797-JUNE 2007 #### **PARAMETER MEASUREMENT INFORMATION (continued)** † Auto-powerdown plus disables drivers and reduces supply current to 1 $\mu\text{A}.$ - NOTES: A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 5 kbit/s, Z_{O} = 50 Ω , 50% duty cycle, $t_{r} \le 10$ ns, $t_{f} \le 10$ ns. Figure 5. INVALID Propagation-Delay Times and Supply-Enabling Time #### **APPLICATION INFORMATION** #### V_{CC} vs CAPACITOR VALUES † C3 can be connected to V_{CC} or GND. NOTES: A. Resistor values shown are nominal. B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown | V _{CC} | C1 | C2, C3, and C4 | |--|--|--------------------------------------| | $\begin{array}{c} 3.3 \text{ V} \pm 0.15 \text{ V} \\ 3.3 \text{ V} \pm 0.3 \text{ V} \\ 5 \text{ V} \pm 0.5 \text{ V} \\ 3 \text{ V to } 5.5 \text{ V} \end{array}$ | 0.1 μF
0.22 μF
0.047 μF
0.22 μF | 0.1 μF
0.22 μF
0.33 μF
1 μF | Figure 6. Typical Operating Circuit and Capacitor Values www.ti.com 17-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ MSL rating/ | | Op temp (°C) | Part marking | |-----------------------|----------|---------------|-----------------|-----------------------|------|--------------------------|--------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | TRS3238ECDB | Obsolete | Production | SSOP (DB) 28 | - | - | Call TI | Call TI | 0 to 70 | TRS3238EC | | TRS3238EIDB | Obsolete | Production | SSOP (DB) 28 | - | - | Call TI | Call TI | -40 to 85 | TRS3238EI | | TRS3238EIPWR | Active | Production | TSSOP (PW) 28 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | RS38EI | | TRS3238EIPWR.B | Active | Production | TSSOP (PW) 28 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | RS38EI | | TRS3238EIPWRG4 | Active | Production | TSSOP (PW) 28 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | RS38EI | | TRS3238EIPWRG4.B | Active | Production | TSSOP (PW) 28 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | RS38EI | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 17-Jun-2025 # **PACKAGE MATERIALS INFORMATION** www.ti.com 23-Jul-2025 #### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TRS3238EIPWR | TSSOP | PW | 28 | 2000 | 330.0 | 16.4 | 6.75 | 10.1 | 1.8 | 12.0 | 16.0 | Q1 | | TRS3238EIPWRG4 | TSSOP | PW | 28 | 2000 | 330.0 | 16.4 | 6.75 | 10.1 | 1.8 | 12.0 | 16.0 | Q1 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 23-Jul-2025 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | TRS3238EIPWR | TSSOP | PW | 28 | 2000 | 353.0 | 353.0 | 32.0 | | TRS3238EIPWRG4 | TSSOP | PW | 28 | 2000 | 353.0 | 353.0 | 32.0 | PW (R-PDSO-G28) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 SMALL OUTLINE PACKAGE #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-150. SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated