

SN65HVD3080E, SN65HVD3083E, SN65HVD3086E SLLS771F - NOVEMBER 2006 - REVISED MARCH 2023

SN65HVD308xE Low-Power RS-485 Full-Duplex Drivers and Receivers

1 Features

- · Low quiescent power
 - 375 µA (Typical) Enabled mode
 - 2 nA (Typical) Shutdown mode
- Small MSOP package
- 1/8 Unit-Load—Up to 256 nodes per bus
- 16 kV Bus-pin ESD protection, 6 kV all pins
- Failsafe receiver (bus open, short, idle)
- TIA/EIA-485A Standard compliant
- RS-422 Compatible
- Power-up, power-down glitch-free operation

2 Applications

- Motion controllers
- Point-of-sale (POS) terminals
- Rack-to-rack communications
- Industrial networks
- Power inverters
- Battery-powered applications
- **Building automation**

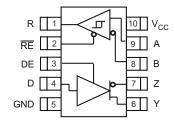
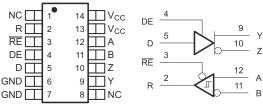



Figure 2-1. DGS Package (Top View)

NC - No internal connection Pins 6 and 7 are connected together internally Pins 13 and 14 are connected together internally

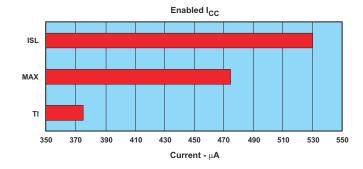
Figure 2-2. D Package (Top View)

3 Description

Each of these devices is a balanced driver and receiver designed for full-duplex RS-485 or RS-422 data bus networks. Powered by a 5-V supply, they are fully compliant with the TIA/EIA-485A standard.

With controlled bus output transition times, the devices are suitable for signaling rates from 200 kbps to 20 Mbps.

The devices are designed to operate with a low supply current, less than 1 mA (typical), exclusive of the load. When in the inactive shutdown mode, the supply current drops to a few nanoamps, making these devices ideal for power-sensitive applications.


The wide common-mode range and high ESD protection levels of these devices make them suitable for demanding applications such as motion controllers, electrical inverters, industrial networks, and cabled chassis interconnects where noise tolerance is essential.

These devices are characterized for operation over the temperature range -40°C to 85°C

Device Information

PART NUMBER	SIGNALING RATE	PACKAGE ⁽¹⁾
SN65HVD3080E	200 kbps	DGS, DGSR 10-pin
SN65HVD3083E	1 Mbps	MSOP ⁽²⁾
SN65HVD3086E	20 Mbps	D 14-pin SOIC

- For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
- (2)The R suffix indicated tape and reel.

Table of Contents

1 Features	1 5.11 Typical Characteristics	7
2 Applications	6 Parameter Measurement Information	8
3 Description		
4 Revision History		
5 Specifications		
5.1 Absolute Maximum Ratings		
5.2 Power Dissipation Ratings		
5.3 Electrostatic Discharge Protection		
5.4 Supply Current		
5.5 Recommended Operating Conditions		
5.6 Thermal Information		
5.7 Driver Electrical Characteristics	9	
5.8 Driver Switching Characteristics	5 9.5 Glossary	14
5.10 Receiver Switching Characteristics		1/
4 Revision History		
NOTE: Page numbers for previous revisions may different changes from Revision E (November 2012) to Rev		Page
Deleted the Ordering Information table		1
Added the Device Information table		1
Added the Thermal Information table		4
Changed the Typical Characteristics		
Changes from Revision D (January 2011) to Revisi	ion E (November 2012)	Page
Added Power-Up, Power-Down Glitch-Free Operation	tion to Features	1
Changed ENABLE in DRIVER FUNCTION TABLE		
Changed ENABLE in RECEIVER FUNCTION TAB		
Added Application Information section		
Changes from Revision C (December 2009) to Rev		Page
 Added Differential input voltage dynamic to RECOI Added Figure 7-1 		
Changes from Revision B (March 2007) to Revision		Page
Added D package		
· Added D package information to Power Dissipation	າ Ratings	<mark>3</mark>
Changed Electrostatic Discharge Protection		3
Changed Supply Current information		4
Changed Receiver Switching Characteristics		
Changed Figure 6-5		8
Changed Figure 6-6		8

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range unless otherwise noted⁽¹⁾

		UNIT
V _{CC}	Supply voltage range ⁽²⁾	−0.3 V to 7 V
$V_{(A)}, V_{(B)}, V_{(Y)}, V_{(Z)}$	Voltage range at any bus terminal (A, B, Y, Z)	−9 V to 14 V
V _(TRANS)	Voltage input, transient pulse through 100 Ω . See Figure 6-10 (A, B, Y, Z)	–50 to 50 V
V _I	Input voltage range (D, DE, RE)	-0.3 V to V _{CC} +0.3 V
P_{D}	Continuous total power dissipation	See the dissipation rating table
T _J	Junction temperature	170°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 Power Dissipation Ratings

PACKAGE	PACKAGE T _A < 25°C		T _A = 85°C
10-pin MSOP (DGS)	463 mW	3.71 mW/°C	241 mW
14-pin SOIC (D)	765 mW	6.1 mW/°C	400 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

5.3 Electrostatic Discharge Protection

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Human Body Model ⁽¹⁾	A,B,Y,Z, and GND	16			kV
	All pins	6			kV
Charged Device Mode ⁽²⁾	All pins	1.5		kV	
Machine Model ⁽³⁾	All pins	400			V

Tested in accordance JEDEC Standard 22, Test Method A114-A. Bus pin stressed with respect to a common connection of GND and V_{CC}.

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽²⁾ Tested in accordance JEDEC Standard 22, Test Method C101.

⁽³⁾ Tested in accordance JEDEC Standard 22, Test Method A115.

5.4 Supply Current

over recommended operating conditions unless otherwise noted

		PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Supply current	RE at 0 V, D and DE at V _{CC,} No load	Receiver enabled, Driver enabled		375	750	μА
		RE at 0 V, D and DE at 0 V, No load	Receiver enabled, Driver disabled		300	680	μА
I _{CC}		$\overline{\text{RE}}$ at V_{CC} , D and DE at V_{CC} , No load	Receiver disabled, Driver enabled		240	600	μА
		RE and D at V _{CC} , DE at 0 V, No load	Receiver disabled, Driver disabled		2	1000	nA

5.5 Recommended Operating Conditions

over operating free-air temperature range unless otherwise noted

			MIM	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5 5	5.5	V
V _I or V _{IC}	Voltage at any bus terminal (s	separately or common mode)	-7 ⁽¹)	12	V
V _{IH}	High-level input voltage	D, DE, RE	2	?	V _{CC}	V
V _{IL}	Low-level input voltage	D, DE, RE	()	0.8	V
V	Differential input voltage		-12	2	12	V
V _{ID}		Dynamic, See Figure 7-1				V
	High level output ourrent	Driver	-60)		m Λ
I _{OH}	High-level output current	Receiver	-10)		mA
	Lave lavel autout aumant	Driver			60	А
I _{OL}	Low-level output current	Receiver			10	mA
TJ	Junction temperature				150	°C
T _A	Ambient still-air temperature		-40)	85	C

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

5.6 Thermal Information

	THERMAL METRIC(1)	D (SOIC)	DGS (VSSOP)	UNIT
	I TERMAL METRIC	14 PINS	10 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	93.2	75.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	47.5	22.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	49.4	44.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	11.2	1.0	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	48.9	44.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

5.7 Driver Electrical Characteristics

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		No load, I _O = 0	3	4.3	V _{CC}	
IV. I	Differential autout valle au	R_L = 54 Ω , See Figure 6-1	1.5	2.3		V
V _{OD}	Differential output voltage	V _{test} = -7 V to 12 V, See Figure 6-2	1.5			V
		R _L = 100 Ω, See Figure 6-1	2			
Δ V _{OD}	Change in magnitude of differential output voltage	R_L = 54 Ω, See Figure 6-1 and Figure 6-2	-0.2	0	0.2	V
V _{OC(SS)}	Steady-state common-mode output voltage		1	2.6	3	
ΔV _{OC(SS)}	Common-mode output voltage (Dominant)	See Figure 6-3	-0.1	0	0.1	V
V _{OC(PP)}	Peak-to-peak common-mode output voltage			0.5		
		$V_{CC} = 0 \text{ V}, V_{(Z)} \text{ or } V_{(Y)} = 12 \text{ V}$ Other input at 0 V			1	
$V_{OC(PP)}$ $I_{Z(Y)}$ or	US-b investors at the subset of succession	V_{CC} = 0 V, $V_{(Z)}$ or $V_{(Y)}$ = -7 V Other input at 0 V	-1			
$I_{Z(Z)}$	High-impedance state output current	V_{CC} = 5 V, $V_{(Z)}$ or $V_{(Y)}$ = 12 V Other input at 0 V			1	μA
		V_{CC} = 5 V, $V_{(Z)}$ or $V_{(Y)}$ = -7 V Other input at 0 V	-1			
l _l	Input current	D, DE	-100		100	μA
Ios	Short-circuit output current	-7 V ≤ V _O ≤ 12 V	-250		250	mA

5.8 Driver Switching Characteristics

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		HVD3080E			1.3	μs	
t _{PLH} , t _{PHL}	Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output	HVD3083E			150	500	ns
THL	r ropagation dotay time, mgm to low lover edipat	HVD3086E	-		12	20	ns
		HVD3080E	$R_1 = 54 \Omega$	0.5	0.9	1.5	μs
t _r , t _f	Differential output signal rise time Differential output signal fall time	HVD3083E	$C_{L} = 50 \text{ pF},$		200	300	ns
٦	Direction and Calput engine, fair time	HVD3086E	See Figure 6-4		7	15	ns
		HVD3080E			20	200	ns
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	HVD3083E			5	50	ns
		HVD3086E	-		1.4	5	ns
	Propagation delay time, high-impedance-to-high-level output	HVD3080E			2.5	7	μs
t _{PZH}		HVD3083E	R _L = 110 Ω, RE at 0 V, See Figure 6-5		1	2.5	μs
TZN		HVD3086E			13	30	ns
		HVD3080E			80	200	ns
t _{PHZ}	Propagation delay time, high-level-to-high-impedance output	HVD3083E			60	100	ns
	mgm lover to mgm impodance edipat	HVD3086E			12	30	ns
		HVD3080E			2.5	7	μs
t_{PZL}	Propagation delay time, high-impedance-to-low-level output	HVD3083E			1	2.5	μs
		HVD3086E	R_L = 110 Ω, RE at 0 V,		13	30	ns
		HVD3080E	See Figure 6-6		80	200	ns
t _{PLZ}	Propagation delay time, low-level-to-high-impedance output	HVD3083E			60	100	ns
	ouput	HVD3086E	1		12	30	ns
t _{PZH} ,	Propagation delay time, standby-to-high-level output (See Figure 6-5)	D = 440 O DE et 2.1/		2.5	7	
t_{PZL}	Propagation delay time, standby-to-low-level output (S	see Figure 6-6)	$R_L = 110 \Omega$, \overline{RE} at 3 V		3.5	7	μs

5.9 Receiver Electrical Characteristics

over recommended operating conditions unless otherwise noted

	PARAMETER	ł	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going differential input threshold voltage		I _O = -10 mA	-0.08 -0.01		-0.01	V
V _{IT-}	Negative-going differential i	nput threshold voltage	I _O = 10 mA	-0.2	-0.2 -0.1		V
V _{hys}	Hysteresis voltage (V _{IT+} - V	i _{IT-})			30		mV
V _{OH}	High-level output voltage		V _{ID} = 200 mV, I _{OH} = -10 mA, See Figure 6-7 and Figure 6-8	4 4.6			V
V _{OL}	Low-level output voltage		V _{ID} = -200 mV, I _{OH} = 10 mA, See Figure 6-7 and Figure 6-8	0.15		0.4	V
I _{OZ}	High-impedance-state outp	ut current	V _O = 0 or V _{CC}	-1		1	μΑ
			V _A or V _B = 12 V		0.04	0.11	
	Pug input current	044	V _A or V _B = 12 V, V _{CC} = 0 V		0.06	0.13	mA
1	Bus input current	Other input at 0V	V_A or $V_B = -7 V$	-0.1	-0.04		ША
			V_A or $V_B = -7 \text{ V}$, $V_{CC} = 0 \text{ V}$	-0.05	-0.03		
I _{IH}	High-level input current		V _{IH} = 2 V	-60	-30		μΑ
I _{IL}	Low-level input current		V _{IL} = 0.8 V	-60	-30		μΑ
C _{ID}	Differential input capacitano	ce	V _I = 0.4 sin (4E6πt) + 0.5 V		7		pF

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

5.10 Receiver Switching Characteristics

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output					100	
t _{PHL}	Propagation delay time, high-to-low-level output	T.,	V _{ID} = -1.5 V to 1.5 V, C _L = 15 pF, See Figure 6-8		79	100	
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	$\nabla_{ID} = -1.5 \text{ V to}$ $C_{L} = 15 \text{ pF Se}$			4	10	ns
t _r	Output signal rise time				1.5	3	
t _f	Output signal fall time				1.8	3	
t _{PZH} ,	Output enable time		DE at V _{CC} , See Figure 6-9		10	50	ns
t _{PZL}		From standby	DE at GND, See Figure 6-9		1.7	3.5	μs
t _{PHZ,} t _{PLZ}	Output disable time		DE at GND or V _{CC} , See Figure 6-9		7	50	ns

5.11 Typical Characteristics

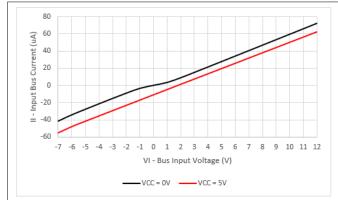


Figure 5-1. Input Bias Current vs BUS Input Voltage

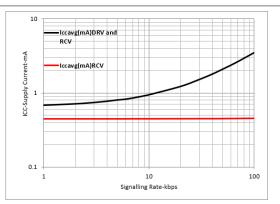


Figure 5-2. HVD3080E Supply Current vs Signaling Rate

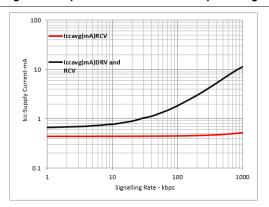


Figure 5-3. HVD3083E Supply Current vs Signaling Rate

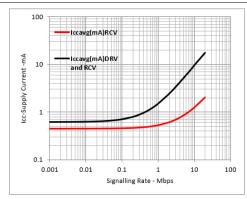


Figure 5-4. HVD3086E Supply Current vs Signaling Rate

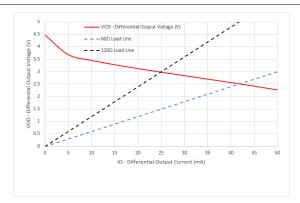


Figure 5-5. Differential Output Voltage vs Differential Output Current

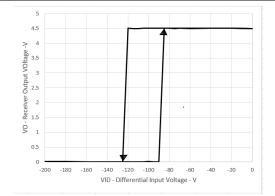


Figure 5-6. Receiver Output Voltage vs Differential Input Voltage

6 Parameter Measurement Information

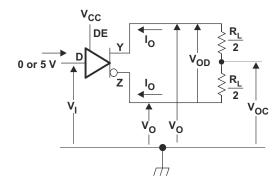


Figure 6-1. Driver V_{OD} Test Circuit and Current Definitions

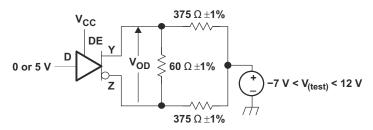


Figure 6-2. Driver V_{OD} With Common-Mode Loading Test Circuit

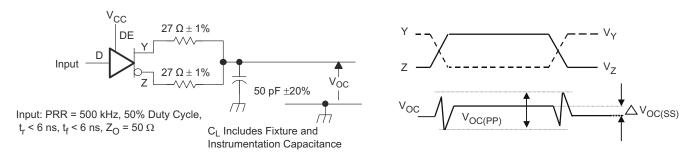


Figure 6-3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Figure 6-4. Driver Switching Test Circuit and Voltage Waveforms

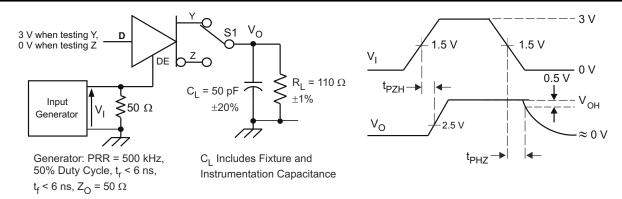


Figure 6-5. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

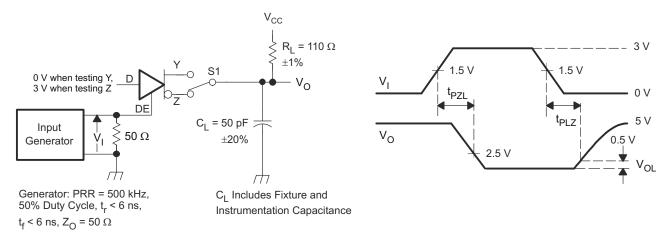


Figure 6-6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

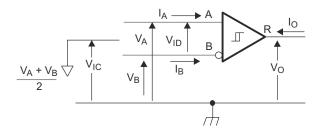


Figure 6-7. Receiver Voltage and Current Definitions

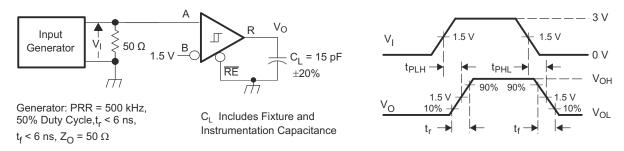


Figure 6-8. Receiver Switching Test Circuit and Voltage Waveforms

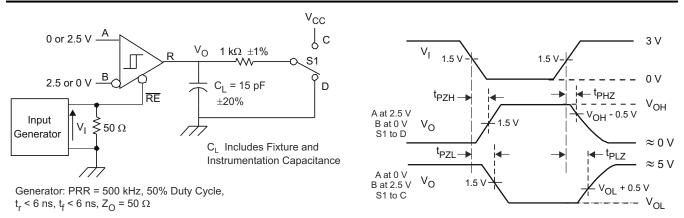
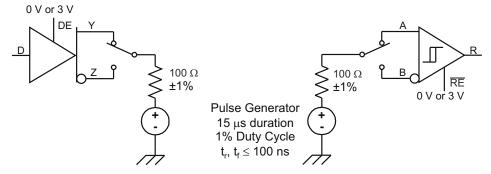



Figure 6-9. Receiver Enable and Disable Test Circuit and Voltage Waveforms

A. This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 6-10. Transient Overvoltage Test Circuit

7 Device Information

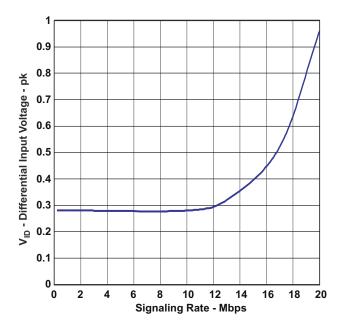


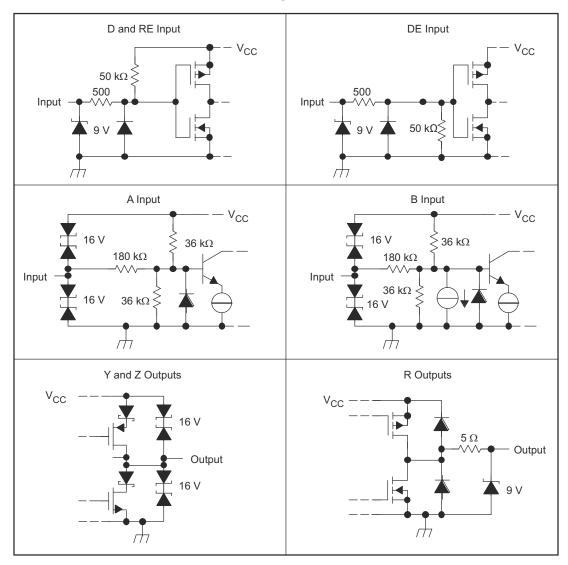
Figure 7-1. Recommended Minimum Differential Input Voltage vs Signaling Rate

7.1 Function Tables

DRIVER

INPUT ⁽¹⁾	ENABLE	ОИТІ	UTS		
D	DE	Y	Z		
Н	Н	Н	L		
L	Н	L	Н		
X	L or OPEN	Z	Z		
Open	Н	Н	L		

(1) H = high level, L = low level, Z = high impedance, X = irrelevant, ? = indeterminate


RECEIVER

$ \begin{aligned} & \text{DIFFERENTIAL INPUTS}^{(1)} \\ & \text{V}_{\text{ID}} = \text{V}_{\text{(A)}} \cdot \text{V}_{\text{(B)}} \end{aligned} $	ENABLE RE	OUTPUT R
V _{ID} ≤ -0.2 V	L	L
-0.2 V < V _{ID} < -0.01 V	L	?
-0.01 V ≤ V _{ID}	L	Н
X	H or OPEN	Z
Open Circuit	L	Н
BUS Idle	L	Н
Short Circuit	L	Н

(1) H = high level, L = low level, Z = high impedance, X = irrelevant, ? = indeterminate

7.2 Equivalent Input and Output Schematic Diagrams

8 Application Information

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Hot-Plugging

These devices are designed to operate in "hot swap" or "hot pluggable" applications. Key features for hot-pluggable applications are power-up, power-down glitch free operation, default disabled input/output pins, and receiver failsafe. An internal Power-On Reset circuit keeps the outputs in a high-impedance state until the supply voltage has reached a level at which the device will reliably operate. This ensures that no spurious transitions (glitches) will occur on the bus pin outputs as the power supply turns on or turns off.

As shown in the device FUNCTION TABLES, the ENABLE inputs have the feature of default disable on both the driver enable and receiver enable. This ensures that the device will neither drive the bus nor report data on the R pin until the associated controller actively drives the enable pins.

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN65HVD3080EDGS	Obsolete	Production	VSSOP (DGS) 10	-	-	Call TI	Call TI	-40 to 85	BTT
SN65HVD3080EDGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	BTT
SN65HVD3080EDGSR.A	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	BTT
SN65HVD3083EDGS	Obsolete	Production	VSSOP (DGS) 10	-	-	Call TI	Call TI	-40 to 85	BTU
SN65HVD3083EDGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	BTU
SN65HVD3083EDGSR.A	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	BTU
SN65HVD3086ED	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-40 to 85	HVD3086E
SN65HVD3086EDGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	BTF
SN65HVD3086EDGSR.A	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 85	BTF
SN65HVD3086EDR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HVD3086E
SN65HVD3086EDR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HVD3086E

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

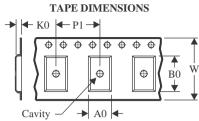
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

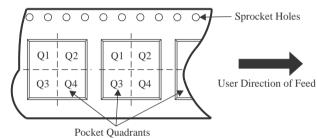
www.ti.com 23-May-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

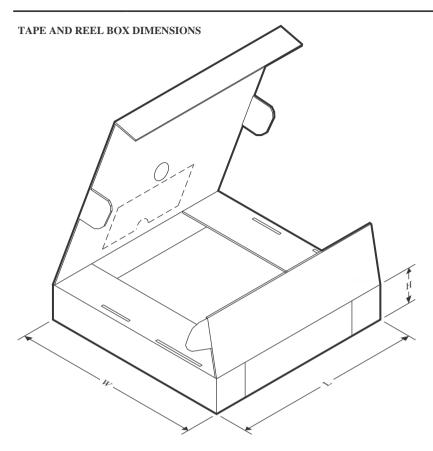
PACKAGE MATERIALS INFORMATION

www.ti.com 27-Jun-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

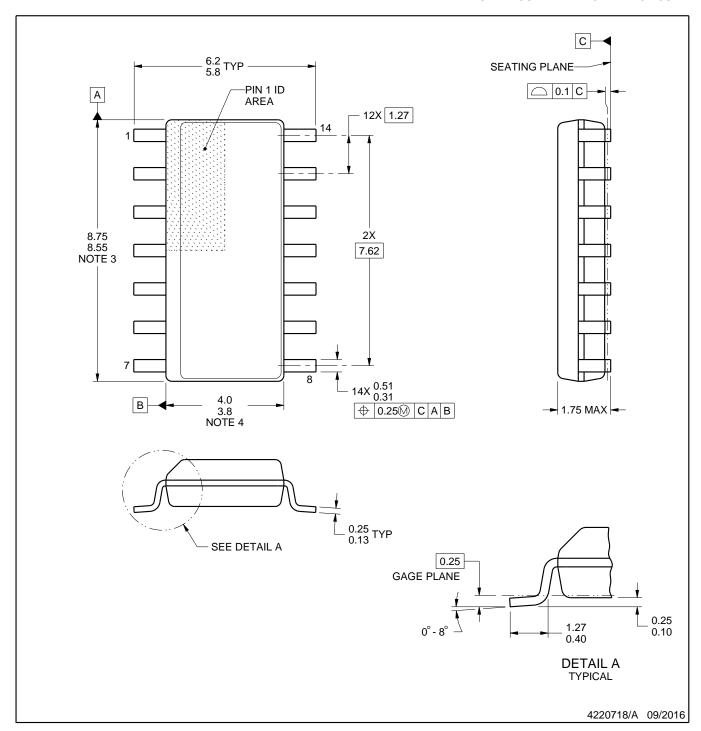
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD3080EDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
SN65HVD3083EDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
SN65HVD3086EDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
SN65HVD3086EDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

www.ti.com 27-Jun-2025

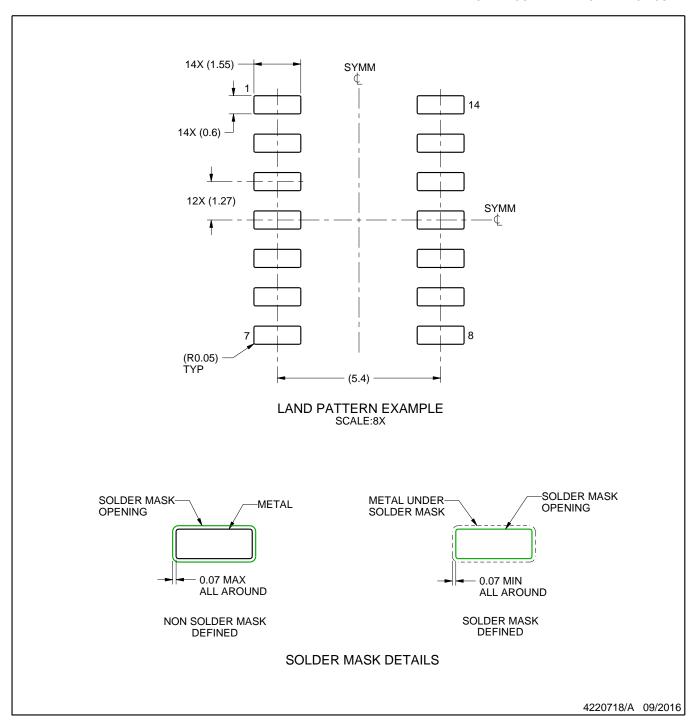


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65HVD3080EDGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
SN65HVD3083EDGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
SN65HVD3086EDGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
SN65HVD3086EDR	SOIC	D	14	2500	356.0	356.0	35.0

SMALL OUTLINE INTEGRATED CIRCUIT

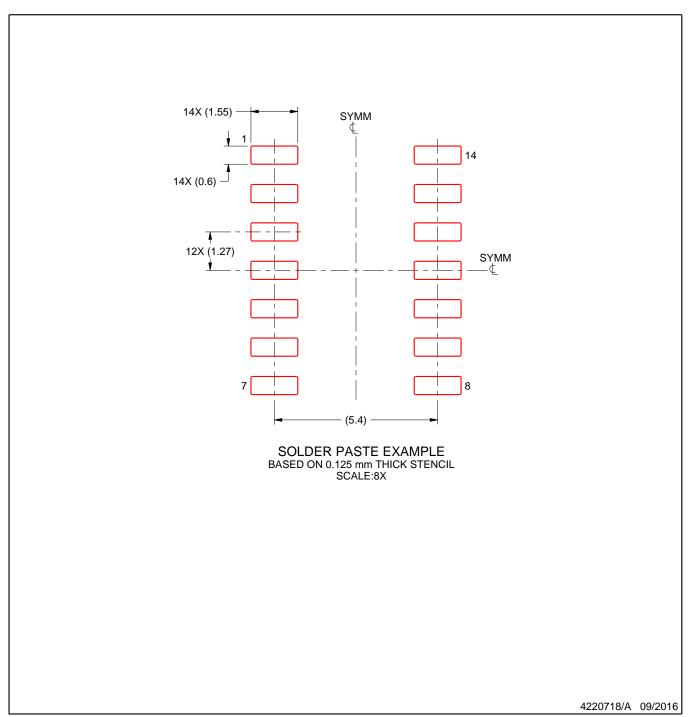
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

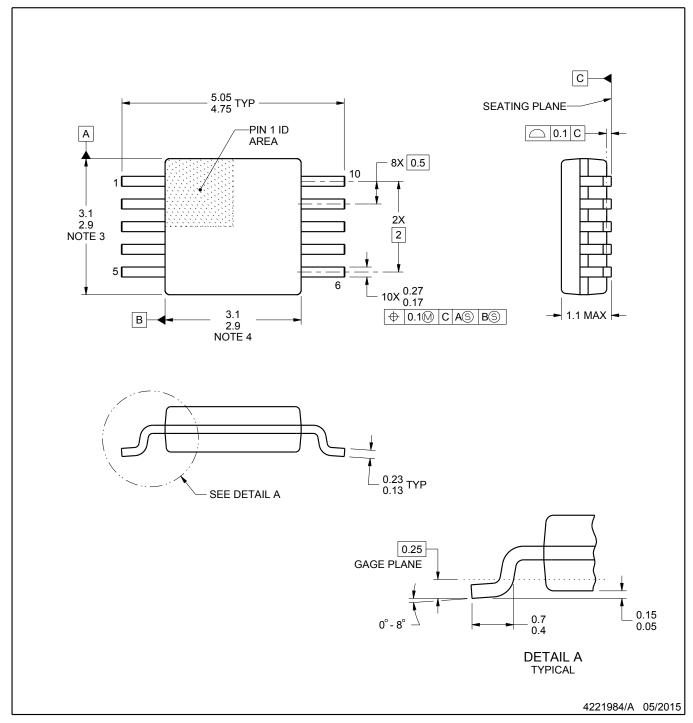
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

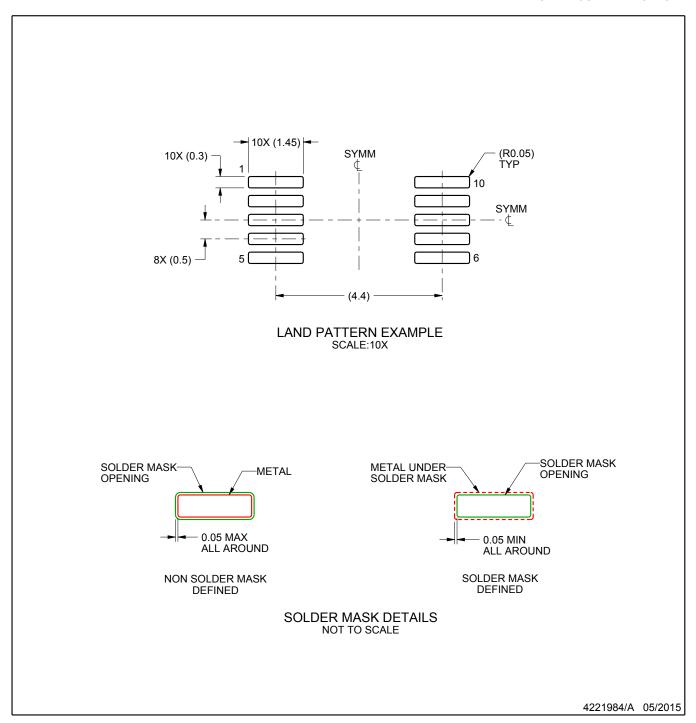
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE PACKAGE

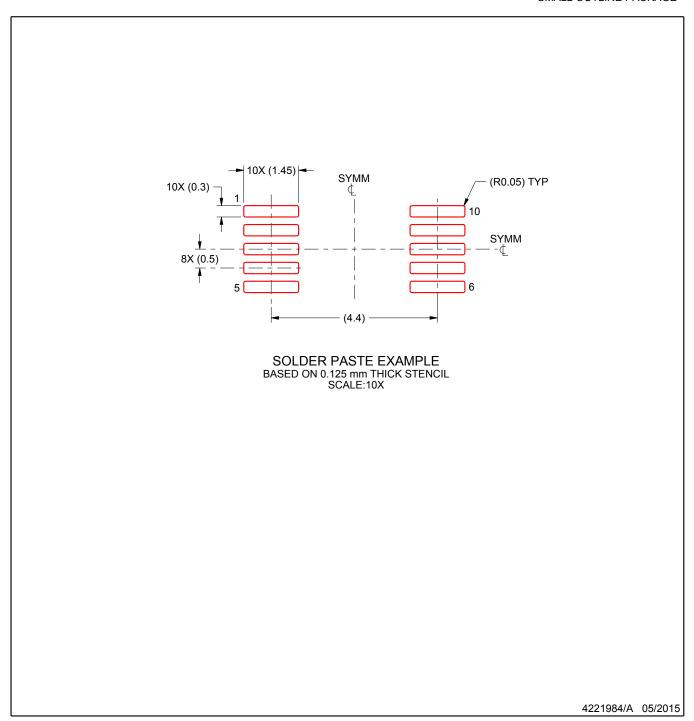
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated